A Particle-Partition of Unity Method-Part III: A Multilevel Solver
نویسندگان
چکیده
In this sequel to [15, 16] we focus on the efficient solution of the linear block-systems arising from a Galerkin discretization of an elliptic partial differential equation of second order with the partition of unity method (PUM). We present a cheap multilevel solver for partition of unity discretizations of any order. The shape functions of a PUM are products of piecewise rational partition of unity (PU) functions φi with supp(φi) = ωi and higher order local approximation functions ψn i (usually a local polynomial of degree ≤ pi). Furthermore, they are non-interpolatory. In a multilevel approach we not only have to cope with non-interpolatory basis functions but also with a sequence of nonnested spaces due to the meshfree construction. Hence, injection or interpolatory interlevel transfer operators are not available for our multilevel PUM. Therefore, the remaining natural choice for the prolongation operators are L2-projections. Here, we exploit the partition of unity construction of the function spaces and a hierarchical construction of the PU itself to localize the corresponding projection problem. This significantly reduces the computational costs associated with the setup and the application of the interlevel transfer operators. The second main ingredient for our multilevel solver is the use of a block-smoother to treat the local approximation functions ψn i for all n simultaneously. The results of our numerical experiments in two and three dimensions show that the convergence rate of the proposed multilevel solver is independent of the number of patches card({ωi}). The convergence rate is slightly dependent on the local approximation orders pi.
منابع مشابه
A Particle-Partition of Unity Method Part VII: Adaptivity
This paper is concerned with the adaptive multilevel solution of elliptic partial differential equations using the partition of unity method. While much of the work on meshfree methods is concerned with convergence-studies, the issues of fast solution techniques for the discrete system of equations and the construction of optimal order algorithms are rarely addressed. However, the treatment of ...
متن کاملA Particle-Partition of Unity Method Part VI: A p-robust Multilevel Solver
In this paper we focus on the efficient multilevel solution of linear systems arising from a higher order discretization of a second order partial differential equation using a partition of unity method. We present a multilevel solver which employs a tree-based spatial multilevel sequence in conjunction with a domain decomposition type smoothing scheme. The smoother is based on an overlapping s...
متن کاملAn Adaptive hp-Version of the Multilevel Particle–Partition of Unity Method
This paper is concerned with the hp-adaptive multilevel solution of second order elliptic partial differential equations using the meshfree particle–partition of unity method. The proposed refinement scheme automatically constructs new discretization points (or particles), the meshfree analogue of an adaptive h-refinement, and local approximation spaces with better local resolution, a p-refinem...
متن کاملA Particle-Partition of Unity Method–Part IV: Parallelization
In this sequel to [7, 8, 9] we focus on the parallelization of our multilevel partition of unity method for distributed memory computers. The presented parallelization is based on a data decomposition approach which utilizes a key-based tree implementation and a weighted space filling curve ordering scheme for the load balancing problem. We present numerical results with up to 128 processors. T...
متن کاملParticle–partition of Unity Methods in Elasticity
The particle–partition of unity method (PUM) [1, 2, 3, 4, 5, 8] is a meshfree Galerkin method for the numerical treatment of partial differential equations (PDE). In essence, it is a generalized finite element method (GFEM) which employs piecewise rational shape functions rather than piecewise polynomial functions. The PUM shape functions, however, make up a basis of the discrete function space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2002